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The hydrodynamic stability of a thin film of 
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The stability problem for a thin film of liquid having a linear mean-velocity 
profile and bounded by a fixed wall and free surface is solved asymptotically for 
large values of the Reynolds number R. The analysis is similar to that for plane 
Couette flow, but instability occurs for sufficiently large values of R in accordance 
with Heisenberg’s criterion that neutral disturbances having finite wave num- 
bers and phase velocities for R = co are necessarily unstable as R -+ co. It is 
found that a sufficient condition for stability is W < 3, where W is the Weber 
number based on the mean speed at the free surface and the depth of the film. 
The minimum critical Reynolds number, also based on free surface speed and 
film depth, is found to be R = 203. This last figure is in order-of-magnitude 
agreement with observation, but there remains considerable uncertainty as to 
whether the observed instability corresponds to that considered here. Neutral 
stability curves are presented in an R us OL ( = wave-number) plane with W as the 
family parameter. Brief consideration also is given to the time-rate-of-growth 
of unstable disturbances and to the lighter fluid that, in actual configurations, 
is responsible for the shear in the film. An appendix gives extended and more 
accurate results for the function 2F(z), introduced and calculated previously by 
Tietjens (1925) and Lin (1955). 

1. Introduction 
We present here an approximate determination of the conditions governing 

surface wave formation on a thin film of liquid that is bounded below by a wall 
and subjected to  a prescribed shearing stress at its upper and otherwise free 
surface. This configuration approximates that arising in, for instance, film cooling 
and nose-cone ablation if we assume that the only significant role of the much 
lighter fluid flowing over the film is to produce the mean shear flow. Neglecting 
the effect of the lighter fluid on surface-wave formation obviously can be justified 
if its density is sufficiently small, but we must bear in mind that suficiently small 
also implies that the kinematic viscosity of the film must be small compared 
with that of the lighter fluid (see $ 8  below). 

We also shall assume that the flow is incompressible, two-dimensional and 
laminar (so that the mean velocity profile is linear) and that only those waves 
for which the wave speed is equal to the mean flow speed at some point between 
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the wall and the free surface can absorb energy from the mean flow.? Letting 
U, denote the velocity of the mean flow at the free surface, S the mean thickness 
of the film, v the kinematic viscosity, p the density, c the surface tension, g the 
acceleration of gravity, and h the wavelength of the surface wave, the dimension- 
less parameters characterizing the problem are : 

R = UIS/v (Reynolds number), (1.1) 

W = T-I = pU2,Sfa (Weber number), (1.2) 

P = G - l =  U$/gS (Froude number) (1-3) 

and a = 2nsp (wave-number). (1.4) 

We shall assume R & 1 and G < 1 and seek the corresponding approximations 
to  the neutral-stability (or simply neutral) curves for R vs oc with T as the family 
parameter, say R = R,(a; 5”). 

The foregoing problem has been studied by Feldman (1957), who included the 
lighter fluid in his stability analysis on the assumption that its mean velocity 
profile could be regarded as linear and semi-infinite in extent (a reasonable 
approximation if as, 9 1, where S, denotes the thickness of the laminar sublayer 
in this fluid). Feldman’s configuration is characterized by R, W ,  P, a and, in 
addition, r ,  the ratio of density of the lighter fluid to  that of the lower fluid, and 
l/m, the corresponding viscosity ratio. This configuration presumably should 
reduce to that of the preceding paragraph as r -+ 0 with m fixed. Feldman found 
that there was stability for all a in this limit, that both gravity and surface 
tension were destabilizing for r < 1, and that the minimum value of R, for air 
blowing over an 0-005in. film of water was an order of magnitude larger than 
that inferred from observation. 

A problem closely related to that of the penultimate paragraph is presented 
by a laminar film on an inclined plane, the stability of which has been studied by 
Benjamin (1957). The essential differences are that the velocity profile for the 
latter problem is parabolic rather than linear and that the Reynolds and Froude 
numbers are not independent parameters (for a fixed angle of inclination). 
Benjamin gave special consideration to a vertical film and found instability for 
all R and sufficiently small a. He also found that surface tension was stabilizing 
and calculated a wavelength for maximum instability that was in close agree- 
ment with observation. 

It might be thought that the very striking disparity between the respective 
results of Feldman and Benjamin is analogous to the disparity between plane 
Couette and plane Poiseuille flow and could be traced to the important role of 
profile curvature. In  fact, the analogy between the film with a free surface and 
plane Couette flow is not appropriate, for it overlooks Heisenberg’s criterion (as 
formulated by Lin 1946) that ‘if a velocity profile has an “inviscid” neutral 
disturbance with non-vanishing wave-number and phase velocity (equal to the 
velocity of the mean flow at some point in the profile), the disturbance with the 
same wave-number is unstable in the real fluid when the Reynolds number is 
sufficiently large ’. Lin’s proof of Heisenberg’s criterion is not directly applicable 
to the present configuration, but i t  is readily extended. In Link words (L 4.5, 

t See $8 below for an a po8teriori justification of this last assumption. 
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where the prefix L, followed by the appropriate section or equation number, 
refers to Lin’s 1955 monograph), ‘The key mechanism is a shift in the phase of 
the two components of the velocity of the oscillation by the viscous forces at  the 
solid boundary. This produces a Reynolds stress which converts energy from the 
basic flow to the disturbance’. This energy is O(R-4) as R- tco ,  whereas the 
energy dissipated in the neighbourhood of the free surface is O(R-l) ,  while that 
dissipated elsewhere in the flow is O(R-4). We also observe (see Q 4 below) that 
the film under consideration can support inviscid surface waves with two per- 
missible wave speeds for each wave-number, one upstream and the other down- 
stream relative to U,, and that the former must lie in (0, U,) relative to the wall 
if U, is sufficient.1~ large. It follows that the flow must be unstable for sufficiently 
large values of R, W and F (W and F being the appropriate measures of U, for 
R = co). Conversely, if either W or P is sufficiently small (T or G sufficiently 
large) no wave speed exists in (0, U,) relative to the wall, and we therefore should 
expect sufficiently large surface tension and/or gravity to be stabilizing. 

It appears likely that the primary reason for the conflict between the fore- 
going arguments and Feldman’s conclusions lies in the inadequacy of his asymp- 
totic (as R -+ co) approximations for small wave speeds (cf. L 3.4 and 3.6). Even 
this would not account for his conclusion of stability for all 01 as r + 0, however, 
so that either his analysis contained mathematical errors or he simply mis- 
interpreted the significance of the result that, for his asymptotic approximation, 
R, -+ 00 as r -+ &namely, that disturbances having wave speeds in (0, U,) are 
unstable for sufficiently large, finite values of R. 

The argument outlined in the penultimate paragraph requires three important 
qualifications if the presence of a laminar flow in the lighter fluid is recognized. 
First, there may be an energy dissipation of O(rR;4) = O(r*m-*R-*) in this 
fluid (R, = r m R  being its Reynolds number). This is especially important for 
large a (short wavelength), where the energy supply from the wall actually is 
found to be O(ec2aR-4) at the interface. Secondly, the film of denser fluid will 
act essentially as a wall with respect to the viscous forces in the lighter fluid, 
whence energy may be supplied to disturbances having wave speeds in excess 
of U, (cf. Benjamin 1959). Thirdly, and perhaps unexpectedly, the lighter fluid 
may significantly alter the wave speeds as R + co if its kinematic viscosity is 
of the same order as or less than that of the film. We shall carry (in Q 8) the mathe- 
matical analysis of the two-fluid problem far enough to elucidate these three 
effects, but we shall not attempt to present numerical results for the neutral 
curves (except, of course, for r = 0). These doubtless would be exceedingly 
complex in consequence of the two, distinct classes of modes (finding their 
primary source of energy in one fluid or the other) and might be expected to 
resemble the neutral curves obtained by Lock (1954) for two semi-infinite fluids 
with curved velocity profiles. 

It seems likely that, in the majority of practical applications, the flow in the 
lighter fluid would be turbulent and that the laminar sublayer would not be 
large compared with significant wavelengths (see $ 8  below). Energy then 
could be transferred from the mean flow in this upper fluid to disturbances in 
the film both through the direct action of turbulent fluctuations (Phillips 1957), 
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and through the Reynolds stress associated with profile curvature (Miles 1957, 
1959,1960). Limited experimental data (Knuth 1954) indicate that disturbances 
of relatively short wavelength are present for all film speeds, while stronger 
disturbances of relatively long (compared with film thickness) wavelength appear 
only when a rather well-defined, critical Reynolds number is exceeded. It is at 
least plausible to associate the former disturbances with the direct action of 
turbulent fluctuations and the latter with hydrodynamic instability. Whether 
this hydrodynamic instability depends primarily on energy transfer from the 
mean flow in the film (as described herein) or that in the upper fluid depends 
decisively on whether the phase velocity of the disturbance is less or greater 
than the interfacial speed. 

The minimum critical Reynolds number (approximately 200) determined in 
the following analysis is in order-of-magnitude agreement with that observed 
by Knuth (1954), but the corresponding wavelengths are much smaller than those 
observed by him (private communication). Knuth’s observations of phase 
velocity are inconclusive, but it appears that at least some of the larger, unstable 
waves were travelling downstream relative to the interface and hence did not 
correspond to those considered here. Further experiments, with special emphasis 
on wave kinematics, evidently are desirable. 

2. Equations of motion 
Consider the flow configuration sketched in figure 1. We designate the hori- 

zontal and vertical components of velocity by u and v, the hydrodynamic 
pressure byp, and the shear stress by r and refer all lengths, velocities and stresses 
to  S, U, and pU;. The equilibrium flow then is specified by 

u = U ( y )  = y, p = p o t  T = 7, = R-I, 

I 
(2.1 a, b, c) 

FIGURE 1. Sketch of the linear shear flow and surface-wave disturbance. 

where p ,  denotes the static pressure. We superimpose on this equilibrium flow 
a small, travelling-wave disturbance having the (x, t)-dependence 

where a denotes the wave-number (positive by dehition) of (1.4) and c the wave 
speed, and we seek to determine those values of c, namely the eigenvalues, 
that are compatible with the equations of motion and the boundary conditions. 

E(x,  t )  = eia@<O, (2 .2)  
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Requiring c to be real and in the interval ( 0 , l )  then yields the neutral curves, 
R, vs a. 

We may satisfy the continuity equation by introducing a perturbation stream 
function 

(2.3) 
such that the perturbation velooity is given by 

(2.4 a, b )  
where the prime implies differentiation with respect to y. We also remark that 
the displacement q of any streamline-in particular the free surface or interface 
at y + l-is given by 

Posing (2.4a, b )  in the equations of motion (cf. L 1.3), we obtain 

?k Y ,  t )  = $(Y)  E(x, t )  

u = - ~ u  = -$'E, v = II., = ia$E, 

II. = ( U - c ) y .  (2.5) 

(2.6) 

(2 .7)  

(2.8) 

( U  - c )  ($" - $6) = (iaR)-l($'" - 2a2$" + a4$), 
p = [( U - C )  $ r  - U'$ - (iaR)-' (v - a'$')] E ,  

T = R-'(u, + v,) = - R-l($" + a2$) E,  
for the determination of $ and the perturbation pressure and shear stress. 

The boundary conditions are 

u = v = o ,  y = o ,  (2.9a) b )  

corresponding to the requirements that the velocity vanish at the wall, that the 
normal stress at  the surface be in equilibrium with the capillary and gravitational 
forces resisting the displacement 7, and that the shear stress vanish at the sur- 
face. Substituting ( 2 . 4 ~ ~ )  b ) ,  (2.5), (2 .7 )  and (2.8) in (2.9a, b, c, d ) ,  we obtain 

$ = $ ' = O ,  y=o,  (2.10 a, b)  

- p  + 2 R - l ~ ~  = Tq,, - Gq, T = 0, y = 1, (2.9c, d )  

a = (~-C)$'-$-(~CCR)-~($'''-~~~$')-(TCL~+G)(~-C)-~$ = 0, y =  1, 
(2.10 c) 

$"+a24 = 0, y = 1, (2.10d) 

where we have introduced the abbreviation w for convenience in the subsequent 
analysis. 

3. Asymptotic solutions 
We may determine four, linearly independent solutions to (2.6) with U = y 

therein according to [see F (6)-( 17) for details, where the prefix F denotes an 
equation in Feldman's paper] 

= cosh (ay) ,  $z = sinh (ay), (3.1 a, b)  

where the upper and lower signs in (3.2) correspond to qJ3 and $4, respectively, 
and 6' is given by (3.4) with y replaced by y' therein. We designate as the 
inviscid solutions and $3.4 as the viscous solutions. 
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We require asymptotic approximations to $3,4 as aR -+ 03. The simplest such 

(3.5) 

approximations are [of. L (3.4.9)] 

$3,4 N const. x (y-c)fexp[ T$(iaR)t(y-c)#] ,  aR (y-c( -+ 03, 

where it = exp (i7r/4) and [cf. L (3.4.11)] 

y-c = ( c -y )e - in  (y < c). (3.6) 

(3.7) 

We shall assume 0 < c < 1 and (subject to aposteriori verification) 

(ax)# (1 -c)# B 1, 

so that (3.5) govern the behaviour of both #3 and $4 in the neighbourhood of the 
free surface; on the other hand, we cannot use (3.5) in the neighbourhood of the 
wall unless (aR)tc# & 1. Irrespective of whether or not this last inequality is 
satisfied, however, (3.7) is sufficient to justify the neglect of $4 in the boundary 
oonditions at  y = 0 and g3 in the boundary conditions at  y = 1, the error being 
O{exp [ - Q( 2aR)h (1 - c)g]} relative to unity. 

An asymptotic approximation to $3 that is uniformly valid with respect to c 
as aR -+ 03 is [cf. L (3.6.4)] 

(3.8) 

We shall base the subsequent analysis on this approximation, rather than (3.5), 
and it is primarily (but not only) in this that our analysis differs from that of 
Feldman. 

(L+R)”* (Y-C) 

C(aR)f (Y - c )  - 61f3(5) d6. 
$3 (aR1-q m 

4. Eigenvalue equation 
We may obtain the eigenvalue equation for c by substituting a linear super- 

position of #1,2,3,4 in the boundary conditions (2.10a, b , c , d )  and equating the 
determinant of the resulting algebraic equations (in the unknown coefficients 
of $1, 2,3, 4) to zero. Invoking the approximation that $3 and $4 are exponentially 
small at  the surface and at the wall, respectively, the result is 

1 $10 $20 $30 O I  

where the first subscript (1 ,2 ,3 ,4)  identifies the individual solution and the 
second the point of evaluation (0 or 1). 

It is immediately evident from (4.1) that the eigenvalue equation depends on 
the viscous solutions only through $30/$;0 and ~ 4 / ( $ : 1 +  a2$41). The former 
quantity is given by (3.8) as 

where 

and 

= - (aR)-bF(z),  

2 = (aR)fc 
$40 

(4.4) 
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is defined as in L 3.6 (although differing from Lin's form to the extent of integra- 
tion by parts). The latter quantity is given by (2.10~) and (3.5) as 

Substituting (3.1 a, b) ,  (4.2) and (4.5) in (4.1) and expanding the determinant, 
we may place the result in the form 

[a coth a + a2 cosech2 aF(z)  c] (1 - c - 2 i t ~ R - l ) ~  

- (1 - c - 2iaR-l) - (Ta2 + G) + O(a2cosech2 aR-%,B-Q) = 0. (4.6) 

We remark that the terms of O(R-l) in (4.6) need be retained only if 01 is large; 
otherwise, they are of higher order than terms already neglected. If, on the 
other hand, a is large, the values of c- 1 (the wave speed relative to the free 
surface) given by (4.6) reduce to those calculated by Stokes (1850; Lamb 1945, 
Q 348) for surface waves on a slightly viscous, deep liquid. We also remark that 
neglecting the terms of O(R-l) in (4.6) is tantamount to suppressing the boundary 
condition of zero shear at the free surface. 

5. The inviscid problem 
Letting R = 00 in (4.6), we obtain 

a cotha( 1 - c)' - (1 - C) - (Ta2 + G) = 0 (5.1) 

as the eigenvalue equation governing the inviscid problem. The roots of (5.1), 
to  which we find it convenient to assign the subscript zero, are 

2a coth a 1- (5.2) 
1 +[1+4(Ta2+G)acotha]t i c o =  1-  

We note that the restoration of the original, physical parameters, in place of 
their dimensionless counterparts, yields 

U tanhkS U, tanh k8 
c,-U1 = ~ [ ( : k + i )  tanh(kS)+ ( 2- 2kS ) 2 r - ( p 2 r ) '  (5*3a) 

k = 27r/h, (5.3 b)  

for the inviscid wave speeds relative to the free surface. 
The eigenvalues given by (5 .2)  are real in consequence of the fact that there 

can be no energy transfer between an inviscid shear flow and a travelling wave 
disturbance in the absence of profile curvature (L 4.3). That eigenvalue corre- 
sponding to the negative radical lies in c > 1 and, by hypothesis, is not signi- 
ficant for our stability problem.? That root corresponding to the positive radical 
lies in (0 , l )  if and only if 

acotha-1-Ta2-G > 0, (5.4) 

t Feldman discarded the root in c > 1 on the basis of the erroneous argument that it was 
algebraically extraneous. We also note that F(71) and F(72) are identical and not. as 
Feldman states, in disagreement. Cf. (8.7) below. 
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as will be true if a, < a < al, where a, and a1 are the roots of 

and 

The functionf(a) is plotted in figure 3. 
We can prove that (5.5) has either two or no real roots by noting that f (a)  

decreases monotonically from Q to 0 as a increases from 0 to a, while T + Ga-2 
decreases from 00 to T. If T < Q and G < 1, a, and a1 are determined by 

4 = (Q-T)-lG, f(a1) = T. (5.7 a, b )  

We infer that T > + (W < 3) is a suficient condition for stability as R +- 00, since 
then no eigenvalue of c exists in (0,l). We emphasize, however, that the presence 
of an upper fluid generally would alter this conclusion either by modifying the 
condition for c < 1 (see $ 8  below) or by rendering unstable some modes for 
which c > 1. 

6. The neutral curves 

equating the real and imaginary parts separately to zero to obtain 

(6.1) 
and 

q ( z )  a2 cosech2a c( 1 - c ) ~  - 2aR-l(2( 1 - c )  [a coth a + a2 cosecha a q ( z )  c] - 1) = 0, 

(6.2) 
where the subscripts r and i denote real and imaginary parts. Substituting 

R = ~3c-3a-1 (6.3) 
and rearranging, we obtain 

We may determine the neutral curves by assuming c to be real in (4.6) and 

[a cotha + a2 cosech2 a F,(z) c] (1 - c ) ~  - (1 - c )  - (Ta2 + G) = 0 

z3Fi(z) = 2 (1 ~ 3 2 { 2 ( 1  - c )  [ac0tha+a~cosech2a~(z)c] -  1)sinhZa. (6.4) 

Now, within the approximations already invoked, we may neglect the term in 
P,c and replace c by the inviscid approximation c, on the right-hand side of 

z 3 q ( z )  = H(a,  T + G E ~ ) ,  (6.5) 
(6.4) to obtain 

where 

-sinha (1 +4Ta3cotha)*. (6.6) I” 2a  cosh a [ 1 + (1 + 4Ta3 coth a)* 
H(a,T)  = 2 

We emphasize that the retention of F,(z )  in (6.1) is significant, even though we 
have neglected it in (6.5) and (6.6). 

If a is small, (6.1) yields 

(6.7) c =  ( f - J  ~ ( a 2 - - 3  (a, < a < 11, 

where a, is given by ( 5 . 7 ~ ) .  It follows that the right-hand side of (6.4) is O(a6), 
whence we may approximate (6.5) by I$ = 0, which implies z = 3.394 and 
F, = 0.5637. We then obtain 

R = 27.16( 1 - 3T)-3 (a2 - a-1 (6.8) 
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from (6.3) and (6.7). We note that if a. = 0 (G = 0) ,  R N a--7 as a --f 0, and the 
shape of the lower branch of the neutral curve then is similar to that for plane 
Poiseuille flow [L (3.6.12)]. We observe, however, that our neutral curves are 
single-valued as a --f 0, the upper branch of the Poiseuille curve in this limit being 
determined by profile curvature [L (3.6.13)]. 

If a B a,, we either may ignore G or may carry out our calculations for fixed 
values of T in (6.6) with the understanding that T may be replaced by T + G c 2  
to account for G. To obtain a point on a neutral curve for fixed T ,  we may 
proceed as follows: (i) select a; (ii) determine H from (6.6); (iii) determine x from 
(6.5), the solution of which may not be single-valued (see below); (iv) determine 
c from (6.1), with G = 0 therein and 0 < c < 1; (v) determine R from (6.3). 

25 

20 

15 

23Fi 

10 

5 

n 
2 3 4 5 6 7 8 9 10 

2 

FIQURE 2. The function zsP,(z) ,  required for the solution of (6.6). 

The left-hand side of (6.5), x3J$(z), is plotted in figure 2 and is found to be 
positive for z > 2.294, to rise to a maximum of 19.9 at z = 4.10, to decrease to 
a minimum of 7.05 at z = 5.44, and then to increase monotonically, being asymp- 
totic to  2-3x4. 

The right-hand side of (6.5), H(a,  T), vanishes at  a = a, and a = a, and has 
a single maximum in (ao, a,) unless T = 0 (a, = 00) in which case it increases 
monotonically with a. It follows that the neutral curve will have either one or 
three branches and that we may determine the (a,T) regions in which these 
possibilities occur by plotting, 

as shown in figure 3. If 0.172 < T < 0.184 (approximate) a portion of the neutral 
curve will take the form of a closed loop, the interior of which forms an island 
of stability in an (a, 22)-plane. If T > 0.184 the neutral curves are single-valued. 

Neutral curves were determined according to the foregoing procedure on a 
high-speed digital computer for T = 0 (0.05) 0.15 (0.01) 0-20 (0.05) 0.30. Neutral 
curves for T = 0, 0.10, 0-20, 0.25 and 0.30 are plotted in figure 4a, and that for 
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0.33 

0 3  

0 2  

T 

0.1 

0 
0 1 2 3 4 5 

a 

a, T-regions is indicated in parentheses. 
FIauRE 3. The number of branches of the neutral curves in the various 

a 

103 - 
0 1 2 3 4 5 

a 

FIGURE 4a. The neutral stability curves determined by (6.1) and (6.5) for G = 0. If G > 0 
the parameter labelled T may be replaced by T + Ga-a. 
FICI~RE 4 b. A neutral stability curve with an island of stability. 

107 

106 

105 

104 
Rc 

103 

102 
0 0.1 0.2 0.3 0.4 

T 

the minima of the neutral curves. 
FIQWRE 6. The (T, R)-locus of stability, as determined from 
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T = 0.18, illustrating an island of stability, in figure 4 b . t  The minimum values 
of the neutral curves are plotted versus T in figure 5. We remark that, although 
increasing T has a stabilizing effect for all a below a, (where ac indicates the 
location of R,) and for sufficiently large a, there exist intermediate ranges of a 
for which increasing T is destabilizing. 

7. Determination of most unstable mode 

unstable mode is that for which ac, is a maximum. 

by assuming Icl < 1 in (4.6) and letting Q = 0, whence 

If R > R, the disturbance of ( 2 . 2 )  will grow like exp(acit), and the most 

We may obtain an approximation to  aci that is at least qualitatively accurate 

2ia 
R 

-_ acoth a- 1 - Ta2 
2a coth a - 1 - a2 cosech2 a P(z) C =  (7.1 a )  

(7.1 b )  
[ f (a) - TI F ( z )  sinh2 a 

1 + [ 1 - ay2(a)] F ( 2 )  sinh2 a 
2ia 
R ’ 

-- - - 

wheref(a) is defined by (4.4) and 

F ( z )  = [I -F(2)]-1. (7.2) 

(7.3) 

separating the real and imaginary parts of (7.1 b) ,  assuming a B 1 in the resulting 
coefficient of R-I (since it is only for a 9 1 that this term is significant), and 

(7-4) 
eliminating c, through 

Assuming lcil -4 c,, approximating 9 according to 

F ( 2 ,  + i2 i )  = F, ( z r )  + i [ F i ( Z , )  + 2$77(2,)] + o(zg9=;, Z i F i ) ,  

2, = (aR))c, ,  

we obtain 

and 

R f d [  f (a)  - TI F, sinh2 a 
1 + [l - a”f(a)] 9, sinh2 a 

2, = (7.5 a)  

R-*(z,Si/%,.) a8 
1 + [I - a”f(a)] 9, sinh2 a - ( z P i / S , )  aci = - - 2R-1a2, (7.5 b)  

where the argument of S,, Si, and .Fi is 2,. We remark that, since (see Appendix) 

F(z) N 1 + i(2aR)-* c,*, (7.6) 

ci > 0 (provided that 0 < c, < 1) as R -+ 00, in accordance with Heisenberg’s 
criterion. 

Some numerical results computed from (7 .5a,  b)  are plotted in figure 6.  The 
dashed portions of the curve are based on the asymptotic approximation (7.6) 
for z > 5 and are less accurate (see Appendix) than the solid portions, which were 
based on Lin’s tabulated values for S ( z )  (and were computed prior to the 
recalculation of F described in the appendix). It appears that the maxima of 
the curves, where they are well defined, occur a t  values of a between 1 and 1.5, 
corresponding to wavelengths between 6 and 4 film thicknesses. 

00892, Space Technology Laboratories, Inc., Los Angeles, California. 
t The complete numerical results are tabulated in Table 2 of Report STL-TR-69-000- 
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FIGURES 6a ,b , c .  The time-rate-of-growth of disturbances, 8s calculated from (7.5). The 
dashed portions of the curves are based on the asymptotic approximation (7 .6) .  

8. Effect of upper fluid 
We now consider quite briefly the dynamical effects of the upper fluid on the 

assumption that it too has a linear velocity profile. This consideration affords 
some clarification of the significance of the preceding analysis for small but finite 
values of the density ratio 

and of the importance of the viscosity ratios 

(8 1) 

(8.2 a, b)  

r = POlPl 

m = pJpg, n = rm = ul/ug. 
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We emphasize that the assumption of a linear velocity profile in the upper 
fluid is likely to be valid only for very short wavelengths. Assuming aero- 
dynamically smooth flow in the upper fluid, the thickness of the laminar sublayer 
is given approximat,ely by 

8, = 5vg/u* 9 (8.3) 

where pgUi is the shearing stress at the interface. Equating this st,ress to 
,ut U,/S and eliminating V,, we obtain 

ag = 2nS,/h = 5(rR)-*m-h. (8.4) 

Anticipating t h a t  the dynamical effects of the flow outside of the laminar sub- 
layer would be O[exp ( - 2ag)], we conclude that a, > 1 might justify the assump- 
tion of a linear velocity profile in the upper fluid. This condition certainly was 
not satisfied in Knuth’s experiments, and it seems unlikely that it would be 
satisfied in most configurations of practical interest. 

Repeating Feldman’s analysis except as regards the asymptotic approxima- 
tion of the viscous solutions, and assuming m B 1, we obtain the asymptotic 
(as R + 03) eigenvalue equation 

[(4.6)] + [n(l -c)  - r ( l  -c)2aea cosechaF(Z)] [1+ O(m-l)] = 0, (8.5) 

where [(4.6)] stands for the left-hand side of equation (4.6), F is given by (4.4), and 

z=+) aRr 4 ( l - C ) = - ( ; )  r 4 (--).. I-c 
(8.6a, b )  

Let us consider first the values of c for R = co, where (8 .5)  yields 

a cotha( 1 - c ) ~  - (1 -n) ( 1  - C )  - (Ta2 + G )  = 0 (8.7) 

in place of (5.1). If n < 1 its only significant effect is to reduce a& as may be seen 
by replacing G by G - n in (5.7 a). If n < 1 but is not small it  also raises the value 
of a1 (the upper limit of a for which c > 0 is possible), but otherwise it does not 
affect the disposition of the roots relative to 0 and 1. If n > 1 the disposition of 
the roots is affected; for example, if Ta2 + G < n - 1 the roots to (8.7) are given 
approximately by 

Ta2 + G tanh a 
1 - e = -  -(n-l)-. 

n-1 ’ a 
(8.8 a, b )  

Small, positive values of c then are impossible, and the primary instability may 
be associated with a mode for which c > 1, in which case the upper fluid no longer 
can be relegated to a subsidiary role, even though r < 1 ; moreover, the restriction 
(3.7) may break down if 11 - cI < 1.  

Turning now to the effect of the last term in (8.5), assuming c to be real and 
equating the imaginary part of the entire equation to zero yields 

&(z) = [(6.4)] ~ - ~ + r ( a c ) - l e ~ s i n h a ~ ( Z ) ,  (8.9) 

where [(6.4)] stands for the right-hand side of equation (6.4). We observe that 
the second term on the right-hand side of (8.9) will be of the same order of magni- 
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tude as the left-hand side if (ac)  e-a cosech a is the of same order of magnitude 
as r ;  for example, if r = the coefficient of F!(Z) will exceed unity for a > 4.6. 
This term will represent an energy sink if 0 < c < I, since then 2 < 0 and 
q(Z) > 0. If c > 1, 2 > 0, and Fi(2) > ( < ) 0 corresponds to an energy source 
(sink). We infer that the effect of the upper fluid cannot be neglected for suffi- 
ciently large a and that it will introduce a new class of modes having wave 
speeds in excess of the interfacial velocity. We then would expect far more 
complicated neutral curves, as in Lock's (1954) problem. 

We again emphasize that the conclusions of the last two paragraphs are not 
likely to be valid if a,, is small. 

9. Conclusions 
We conclude that: (a) a thin film of liquid having a linear mean-velocity profile 

and bounded by a fixed wall and a free surface is unstable for sufficiently large 
values of both the Reynolds number R and the Weber number W ;  (b)  a sufficient 
condition for stability of such a film with respect to small disturbances is either 
R < 203 or W < 3; (c )  such a film constitutes an adequate model for a two-fluid 
configuration for sufficiently small values of the density ratio r ,  but the latter 
restriction may carry with it the requirement that the kinematic viscosity of 
the upper fluid be large compared with that of the film. 

We have not established the conditions that determine whether the instability 
examined here, depending on energy transfer through the Reynolds stress in the 
wall layer, dominates that which could arise through energy transfer from the 
upper fluid, either through the Reynolds stress in the layer adjacent to the 
interface or through the Reynolds stress associated with profile curvature. An 
analysis comprising all of these models of energy transfer would be extremely 
involved, but it seems likely that their relative importance could be established 
by direct observations of wavelength and wave speed, the latter being decisive 
with respect to the role of Reynolds stress at the wall. 

I am indebted to Mr David Giedt for programming and supervising the 
numerical calculations of $5 6 and 7 and of S ( z )  in the appendix. 

Appendix The computation of F(z )  

The function F(z) ,  as defined by (4.4) and (3.3), was introduced originally by 
Tietjens (1925), who computed it for z = 0(0.5)5,  while Lin (1945; see L3.6) 
recomputed it for x = 1 (0.2) 5; see also Holstein (1950). We have repeated the 
computation once again in order to obtain more accurate values of z3Ft(z) and 
also to extend the results to larger values of 2 .  

Following Lin, we find it more convenient t,o consider 
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Integrating (A 2 a) subject to (A 2 b), we obtain 

whence (A 1) reduces to 

We may reduce the remaining integral to one more suitable for numerical evalua- 
tion with the aid of the result [W 13.21 (8), where W indicates Watson’s treatise 

We also find it convenient to introduce 

where Ai denotes the Airy function of the first kind. Substituting (A5) and 
(A 6 a, b )  in (A 4) and (A 2 a) ,  we obtain 

and 
We also note that 

g”(z) + izg(z) = 0. 

g(o) = [3W(2/3)]-1, g‘(o) = [3*r(l/3)]-lein/6. (A 9 a, b) 

The differential equation (A 8) was integrated numerically, with a z-interval 
ofO.O1,toobtainFr,Fi,F;,F;,PrandPiforz = 0.1 (0.1) lOand - z  = 0.1(0.1)6. 
The results are presented in table 1. 

We may obtain the asymptotic series for F ( z )  by carrying out the integration 
in (A4) according to [W 10.74 (51)] 

c p ( C )  m d c  = - ib f l , ,&(W)f’ (C)  + W2fl-1,-g(W)f (c)l, (A 10) 

where flp,v denotes Lommel’s function and 

w = gcitpn14. (A 11) 

Introducing the known, asymptotic series for the Hankel and Lommel functions 

(A 12a) 

(A 12 b )  

We find that (A 12 a )  is adequate only for very large 2, say z > 10, and is still 
5 yo in error at z = 8. On the other hand, (A 12 b )  gives better than 0.1 % accuracy 
for = -2  > 5. 
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z 
0 1  
0.2 
0.3 
0.4 
06  
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1 -2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4-3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
56 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 

TABLE 1. F&), 9&), F;(z), F i ( z ) ,  P&), Fi((z) and zSPi ( z )  versus z = 0.1 (0.1) 10.0 and 
- 0.1 (0.1) - 6.0. The position of the decimal point for the dependent variables is given 
by the last two digits, preceded by a space; for example, 

The decimal point for the independent variable is placed in its natural position. 

0.2901 01 E 2.901, 0.9302 - 02 5 0.009302. 

F T  

-0.1183 00 
-0.2489 00 
-0.3867 00 
-0.5188 00 
-0.6194 00 
-0.6438 00 
-0.5321 00 
-0.2345 00 

0.2409 00 
0.8061 00 
0.1342 01 
0.1770 01 
0.2072 01 
0.2268 01 
0.2386 01 
0.2450 01 
0.2478 01 
0.2481 01 
0.2467 01 
0.2439 01 
0.2401 01 
0.2352 01 
0.2294 01 
0.2227 01 
0.2152 01 
0.2069 01 
0.1980 01 
0.1886 01 
0.1788 01 
0.1689 01 
0.1592 01 
0.1497 01 
0.1408 01 
0.1325 01 
0.1250 01 
0.1184 01 
0.1127 01 
0-1080 01 
0.1041 01 
0.1011 01 
0.9889 00 
0.9737 00 
0.9646 00 
0.9606 00 
0.9608 00 
0.9644 00 
0.9704 00 
0.9781 00 
0.9867 00 
0.9958 00 
0.1005 01 
0.1013 01 
0.1021 01 
0.1028 01 
0.1034 01 
0.1039 01 
0.1043 01 
0.1046 01 
0,1048 01 
0.1049 01 
0.1049 01 
0.1049 01 

9% 
-0.7778-01 
-0.1895 00 
-0.3485 00 
-0.5712 00 
-0.8741 00 
-0.1263 01 
-0.1716 01 
-0.2159 01 
-0.2484 01 
-0.2605 01 
-0.2522 01 
-0.2298 01 
-0.2012 01 
-0.1717 01 
-0.1438 01 
-0.1186 01 
-0.9606 00 
-0.7590 00 
-0,5774 00 
-0.4126 00 
-0.2619 00 
-0.1235 00 

0.3379-02 
0.1191 00 
0.2234 00 
0.3155 00 
0.3948 00 
0404 00 
0.5118 00 
0.5487 00 
0.5715 00 
0.5809 00 
06779 00 
0.5641 00 
0.5411 00 
0.5108 00 
0.4751 00 
0-4356 00 
0.3942 00 
0.3522 00 
0.3109 00 
0.2714 00 
0.2343 00 
0 . 2 m  00 
0.1700 00 
0.1433 00 
0.1203 00 
0.1010 00 
04524-01 
0.7267-01 
0.6297-01 
0.5580-01 
05076-01 
0.4749-01 
04562-01 
04482-01 
04478-01 
04525-01 
0.4601-01 
0.4689-01 
0.4774-01 
0.4848-01 

9; 
-01249 01 
-0.1355 01 
-0.1380 01 
-0.1221 01 
-04'156 00 

0.3311 00 
0.1995 01 
0.3949 01 
06403 01 
0.5689 01 
04895 01 
0.3640 01 
0.2445 01 
0.1521 01 
0,8724 00 
0.4354 00 
0.1412 00 

-0.6314-01 
-0.2138 00 
-0.3339 00 
-0.4378 00 
-0.5334 00 
-0.6242 00 
-0.7107 00 
-0.7912 00 
-0.8625 00 
-0.9208 00 
-0.9625 00 
-0.9845 00 
-0.9851 00 
-0.9640 00 
-0.9225 00 
-0.8632 00 
-0.7895 00 
-04'055 00 
-0.6151 00 
-0.5223 00 
-04304 00 
-0.3424 00 
-0.2603 00 
-0.1859 00 
-0.1203 00 
-0.6392-01 
-0.1708-01 

0.2044-01 
04911-01 
0.6962-01 
0.8284-01 
0.8974-01 
0.9134-01 
04867-01 
0.8272-01 
0.7444-01 
06466-01 
0.5411-01 
0.4341-01 
0.3305-01 
0.2339-01 
0.1471-01 
0.7167-02 
0.8349-03 

-04280-02 

-0'9281 00 
-0.1328 01 
-0.1879 01 
-0.2605 01 
-0.3467 01 
-0,4283 01 
-04641 01 
-0429  01 
-0.2315 01 
-0.1210 00 

0.1672 01 
0.2662 01 
0,2973 01 
0.2897 01 
0.2659 01 
0.2385 01 
0.2129 01 
0.1910 01 
0.1727 01 
0.1574 01 
0-1443 01 
0.1325 01 
0.1213 01 
0.1101 01 
0.9834 00 
0.8584 00 
0.7254 00 
0.5855 00 
04418 00 
0.2981 00 
0.1593 00 
0.2965-01 

- 043679- 01 
-0.1871 00 
-0.2695 00 
-0.3333 00 
-0.3787 00 
-04068 00 
- 0 4 9 4  00 
-0.4183 00 
-0.4058 00 
-0.3842 00 
-0.3556 00 
-0.3222 00 
-0-2859 00 
-0.2483 00 
-0.2109 00 
-0.1749 00 
-0.1413 00 
-0.1108 00 
-0+3371-01 
-0.6041-01 
- 0.4092- 01 
-0.2514-01 
-0.1285-01 
-0.3737-02 

0,2574-02 
0.649'1-02 
04452-02 
0.8851-02 
0+3080-02 
0.6487-02 

F T  

0.6901 01 
0.3544 01 
0.2427 01 
0.1871 01 
0.1540 01 
0.1320 01 
0.1165 01 
0.1050 01 
0.9613 00 
0.8916 00 
0,8356 00 
0.7897 00 
0.7516 00 
04'197 00 
0.6926 00 
0.6693 00 
0.6491 00 
0.6314 00 
0.6157 00 
0.6014 00 
06883 00 
0.5760 00 
0.5641 00 
0.5523 00 
0.5403 00 
0.5277 00 
0.5143 00 
0.4995 00 
04331 00 
0.4646 00 
0 4 3 5  00 
0.4195 00 
0.3922 00 
0.3611 00 
0.3264 00 
0.2881 00 
0.2468 00 
0.2036 00 
0.1600 00 
0.1180 00 
0.7976-01 
0'4699-01 
0.2103-01 
0.2384-02 

-0.9187-02 
-0.1455-01 
-0.1493-01 
-0.1164-01 
- 0.5938- 02 

0.1 128-02 
0,8728-02 
0.1625-01 
0'2329-01 
0.2958-01 
0.3498-01 
0.3942-01 
0.4292-01 
0.4553-01 
0.4731-01 
04336-01 
0.4878-01 
0.4868-01 

Fi 
-0.3880 01 
-0'1936 01 
-0'1286 01 
-0.9593 00 
-0'7616 00 
-0.6284 00 
-06317 00 
-04578 00 
-0.3989 00 
-0.3503 00 
-0'3090 00 
-0.2731 00 
-0.2412 00 
-0.2122 00 
-0'1853 00 
-0.1601 00 
-0.1360 00 
-0.1128 00 
-0.8996-01 
-0.6742-01 
-0.4491-01 
-0.2227-01 

0,6422-03 
0.2394-01 
0.4772-01 
0.7202-01 
0.9685-01 
0.1222 00 
0.1479 00 
0.1739 00 
0.1998 00 
0.2252 00 
0.2495 00 
0.2719 00 
0.2915 00 
0.3071 00 
0.3174 00 
0.3213 00 
0.3180 00 
03072 00 
0.2893 00 
0.2656 00 
0.2378 00 
0.2081 00 
0.1785 00 
0.1507 00 
0.1258 00 
0.1045 00 
0.8690-01 
0.7289-01 
0.6212-01 
0.5416-01 
04855-01 
04482-01 
0.4257-01 
0.414%01 
0.4109-01 
0.4130-01 
0.4184-01 
0455-01 
04329-01 
04397-01 

z3Fi 
- 0.3880- 02 
-0.1549-01 
- 0'3472- 01 
-0.6139-01 
-0.9521-01 
-0.1357 00 
-0.1824 00 
-0.2344 00 
-0-2908 00 
-0.3503 00 
-0.4113 00 
-0.4719 00 
-0'5298 00 
-0.5821 00 
-0.6255 00 
-0.6558 00 
-0.6683 00 
-0.6576 00 
-0.6171 00 
-0.5393 00 
-0.4159 00 
-0.2371 00 

0.7814-02 
0.3310 00 
0.7456 00 
0.1266 01 
0.1906 01 
0.2682 01 
0.3608 01 
04695 01 
0.5952 01 
0.7379 01 
0.8966 01 
0.1069 02 
0.1250 02 
0.1433 02 
0.1608 02 
0.1763 02 
0.1886 02 
0.1966 02 
0.1994 02 
0.1968 02 
0.1891 02 
0.1773 02 
0.1627 02 
0.1467 02 
0.1306 02 
0.1156 02 
0.1022 02 
0.9111 01 
0.8241 01 
0.7616 01 
0.7227 01 
0.7057 01 
0.7082 01 
0.7276 01 
0.7610 01 
0.8059 01 
0.8594 01 
0.9191 01 
0.9826 01 
0.1048 02 



z 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6-9 
7.0 
7.1 
7.2 
7-3 
7.4 
7.5 
7-6 
7-7 
7.8 
7.9 
8.0 
8.1 
8.2 
8-3 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 
9.0 
9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 
9.9 

10.0 

-0.1 
- 0.2 
-0.3 
-0.4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 
-1.0 
-1.1 
-1.2 
-1.3 
-1.4 
- 1.5 
-1.6 
- 1.7 
- 1.8 
-1.9 
-2.0 
-2.1 
-2.2 
-2.3 
-2.4 
-2.5 
-2.6 
-2.7 
-2.8 
-2.9 

S T  

0.1048 01 
0.1047 01 
0.1046 01 
0.1045 01 
0,1043 01 
0.1042 01 
01040 01 
0.1039 01 
0.1038 01 
0.1037 01 
0.1035 01 
0.1035 01 
0.1034 01 
0.1033 01 
0.1032 01 
0.1031 01 
0.1031 01 
0.1030 01 
0.1030 01 
0.1029 01 
0.1029 01 
0.1028 01 
0.1028 01 
0.1027 01 
0.1027 01 
0.1027 01 
0.1026 01 
0.1026 01 
0.1025 01 
0.1025 01 
0.1025 01 
0.1024 01 
0.1024 01 
0.1024 01 
0.1023 01 
0.1023 01 
0.1022 01 
0.1022 01 

0.10-17 00 
0.1964 00 
0.2763 00 
0.3459 00 
04066 00 
04597 00 
0.5062 00 
0.5472 00 
0.5834 00 
0.6155 00 
0.6441 00 
0.6696 00 
0.6925 00 
0.7131 00 
0.7316 00 
0.7484 00 
0,7637 00 
0.7776 00 
0.7903 00 
0.8019 00 
0.8125 00 
0.8223 00 
0.8314 00 
0.8397 00 
0.8474 00 
0.8545 00 
0.8612 00 
06673 00 
0.8731 00 
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pi 
0.4902- 01 
0.4935-01 
0.494.2-01 
0.4926-01 
04888-01 
0.4830-01 
04755- 01 
04667-01 
0468-01 
04463-01 
0.4354-01 
0.424-01 
0.4134-01 
04026-01 
0.3922-01 
0.3822-01 
0.3726-01 
0.3635-01 
03549-01 
0.3468-01 
0.3392-01 
0.3319-01 
0.3250-01 
0.3185-01 
0.3122-01 
0.3062-01 
03005-01 
0.2950-01 
0.2896-01 
0.2844-01 
0.2794-01 
0.2745-01 
0.2698-01 
0.2652-01 
0.2607-01 
0.2563-01 
0.2520-01 
0.2479-01 

05379-01 
0,9065-01 
0.1156 00 
0,1320 00 
0.1424 00 
0.1485 00 
0,1515 00 
0.1523 00 
0.1515 00 
0.1496 00 
0.1470 00 
0.1438 00 
0-1403 00 
0.1365 00 
0.1327 00 
0.1288 00 
0-1249 00 
0.1210 00 
0.1172 00 
0.1135 00 
0.1099 00 
0.1065 00 
0.1031 00 
09!390-01 
0,9679-01 
0.9380-01 
0.9093-01 
043817-01 
0.8552-01 

9; 
-0.8229-02 
-0.1111-01 
- 0.1303- 01 
-0.1415-01 
-0.1459-01 
-0.1451-01 
-0.1403-01 
-0.1328-01 
-0.1236-01 
-0.1136-01 
-0.1034-01 
-0.9351-02 
-0.8436-02 
-03'615-02 
-0.6901 -02 
-0'6294-02 
-0'5793-02 
-0.5388-02 
-06067-02 
-04818-02 
- 0.4627- 02 
-04481-02 
-0.4368-02 
-04279-02 
-04206-02 
- 0.4140-02 
- 0 4 7 9 -  02 
-04017-02 
-0.3953-02 
- 0.3886- 02 
- 0.3815-02 
-0.3741-02 
-0.3664-02 
- 0.3584- 02 
- 0.3503- 02 
-03422-02 
-0.3341-02 
- 0.3261- 02 

-0.9804 00 
-043557 00 
-0.7451 00 
-0.6492 00 
-0'5667 00 
-0.4963 00 
-0'4360 00 
-0.3846 00 
-0.3404 00 
-0.3025 00 
-0.2698 00 
-0.2414 00 
-0'2168 00 
-0.1954 00 
-0.1766 00 
-0.1601 00 
-0.1455 00 
-0.1327 00 
-0.1212 00 
-0.1111 00 
-0.1020 00 
-0.9390-01 
-0.8662-01 
-0+3007-01 
-0.7415-01 
-0.6881-01 
-0.6396-01 
- 0.5956- 01 
- 0.5555- 01 

9; 
04376-02 
0.2002-02 

-04284-03 
- 0.2759- 02 
- 0.4876-02 
-0.6706-02 
-0.8210-02 
-0.9376-02 
- 0.1021- 01 
-0.1075-01 
-0~1101-01 
-0.1105-01 
-0.1091-01 
-0.1063-01 
-0.1024-01 
-0.9798-02 
-0.9317-02 
- 0.8826- 02 
-04344-02 
-0.7 884- 02 
-0.7455-02 
-04'062-02 
- 0.6708- 02 
-04391-02 
-0.6109-02 
-0.5859-02 
-0.5638- 02 
-0.5440-02 
-0.5262-02 
-0'5100-02 
- 04951 - 02 
-04812-02 
-0.4681-02 
- 04556- 02 
-0436-02 
-04319-02 
-0420&02 
-04096-02 

-04431 00 
-0.3020 00 
-0.2019 00 
-0.1308 00 
- 0 . m - 0 1  
-04377-01 
-0.1782-01 

0'7189-03 
0.1389-01 
0.2314-01 
0.2954-01 
0.3383-01 
0.3658-01 
0.3819-01 
0.3896-01 
0.3911-01 
0.3882-01 
0.3821-01 
0.3737-01 
0.3637-01 
0.3527-01 
0.3411 -01 
0.3291-01 
0.3170-01 
0.3049-01 
0.2931-01 
0'2814-01 
0.2702-01 
0.2592-01 

E; 
04815-01 
0.4729-01 
04620-01 
04495-01 
0.4360-01 
04222-01 
04084-01 
0.3951-01 
0.3825-01 
0.3706-01 
0'3597-01 
0.3497-01 
0.3406-01 
0.3324-01 
0.3248-01 
0'3180-01 
0.3117-01 
0.3058-01 
0'3W-01 
0.2952-01 
04903-01 
0.2855-01 
0.2810-01 
0.2765-01 
0.2721-01 
0.2678-01 
0.2636-01 
0.2595-01 
0.2554-01 
0.2514-01 
0.2475-01 
0.2436-01 
0.2399-01 
0.2362-01 
0.2326-01 
0.2291-01 
0.2257 -01 
0.2223-01 

-0.6555 01 
-0.3197 01 
-0.2080 01 
-0.1523 01 
-0,1191 01 
-0.9699 00 
-043130 00 
-0.6961 00 
-0.6058 00 
-0.5341 00 
-04758 00 
-0.4276 00 
-0.3872 00 
-0.3528 00 
-0.3233 00 
-0.2977 00 
-0.2753 00 
-0.2556 00 
-0.2381 00 
-0.2225 00 
-0'2086 00 
-0.1960 00 
-0,1846 00 
-0'1743 00 
-0.1649 00 
-0.1563 00 
-0.1484 00 
-0.1412 00 
-0.1345 00 

pi 
04451-01 
04489-01 
04506-01 
04503-01 
04481-01 
0.4440-01 
04384-01 
04314-01 
04234-01 
0'4146-01 
0.4054-01 
0'3959-01 
0'3863-01 
0.3769-01 
0'3676-01 
0.3587-01 
0.3502-01 
0.3421-01 
0'3343-01 
0.3270-01 
0'3201-01 
0.3135-01 
03073-01 

0.2957-01 
0.2903-01 
0.2851-01 
0.2801-01 
02752-01 
02705-01 
02659- 01 
02615-01 
0.2572-01 
02530-01 
0.2488-01 
02448-01 
02409-01 
02371-01 

0.3880 01 
0.1937 01 
01288 01 
0.9627 00 
07671 00 
0.6363 00 
05425 00 
04721 00 
04171 00 
03730 00 
0.3368 00 
0.3066 00 
0.2810 00 
02590 00 
0.2399 00 
02232 00 
0.2085 00 
01954 00 
0.1836 00 
01731 00 
0.1635 00 
0.1549 00 
0,1470 00 
01397 00 
0.1331 00 
0.1269 00 
0.1213 00 
0.1160 00 
0.1111 00 

0.3014-01 
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Z 3 F j  

0.1113 02 
0.1177 02 
0.1238 02 
0.1295 02 
0.1348 02 
0.1396 02- 
0.1440 02 
0.1480 02 
0.1515 02 
0.1548 02 
0.1577 02 
0.1604 02 
0.1630 02 
0.1654 02 
0.1678 02 
0.1702 02 
0.1727 02 
0.1751 02 
0.1777 02 
0,1803 02 
0.1830 02 
0.1858 02 
0.1887 02 
0.1917 02 
0.1947 02 
0.1978 02 
0.2010 02 
0.2042 02 
0.2074 02 
0.2107 02 
0.2139 02 
0.2172 02 
0.2205 02 
0.2238 02 
0.2271 02 
0.2304 02 
0.2338 02 
0.2371 02 

-0.3880-02 
-0.1549-01 
-0.3477-01 
-0.6162-01 
-0.9588-01 
-0.1374 00 
-0.1861 00 
-0.2417 00 
-0'30.20 00 
-0.3730 00 
-0,4483 00 
-0.5298 00 
-0.6174 00 
-04'108 00 
-08098 00 
-0.9144 00 
-0.1024 01 
-0.1139 01 
-0.1260 01 
-0.1385 01 
-0.1515 01 
-0.1649 01 
-0.1788 01 
-0.1931 01 
-0'2079 01 
-0.2231 01 
-0.2387 01 
-0.2547 01 
-0.2710 01 
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TABLE 1 (cont.) 

z 
-3.0 
-3.1 
-3.2 
-3.3 
-3.4 
-3.5 
-3.6 
-3.7 
-3.8 
-3.9 
-4.0 
-4.1 
-4.2 
-4.3 
- 4.4 
-4.5 
-4.6 
- 4 7  
-443 
-4.9 
-5.0 
-5.1 
-5.2 
-5.3 
-54 
-5.5 
-5.6 
-5.7 
-5.8 
-5.9 
-6.0 

Sf 
0.8785 00 
06335 00 
0.8882 00 
04926 00 
06967 00 
0.9006 00 
0.9043 00 
0.9077 00 
0,9110 00 
0.9141 00 
0.9170 00 
0.9197 00 
0.9224 00 
0.9248 00 
0.9272 00 
0.9294 00 
0.9315 00 
0.9336 00 
0.9355 00 
0.9373 00 
0.9391 00 
0.9408 00 
0.9424 00 
0.9440 00 
0.9455 00 
0.9470 00 
0.9484 00 
0.9499 00 
0.9512 00 
0.9525 00 
0.9537 00 

s i  

0.8298-01 
0.8055-01 
0.7821-01 
04'597-01 
0.7382-01 
0.7176-01 
0'6978-01 
0.6788-01 
0.6605-01 
06430-01 
0.6262-01 
0.6100-01 
0.594-01 
0.5795-01 
0.5651-01 
0.5512-01 
0.5378-01 
0.5249- 01 
0.5125-01 
0.5005-01 
0.4888-01 
0.4775-01 
04666-01 
0.4560-01 
0.4459-01 
0.4362-01 
04271-01 
0.4188-01 
0.4115-01 
0.4054-01 
0~4007-01 

.c 
-0.5190-01 
-04856-01 
-04550-01 
- 04269- 01 
-0.4011-01 
- 0.3774- 01 
- 0.3555- 01 
-0.3353-01 
- 0.3166- 0 1 
-03993-01 
- 0.2832- 01 
-0.2683-01 
-0.254-01 
- 0.2414- 01 
-0.2293-01 
-0.2180-01 
-04075-01 
-0.1976-01 
- 0.1885- 01 
-0.1801-01 
-0.1724-01 
-0.1656-01 
-0.1595-01 
-0.1544-01 
-0.1501-01 
-0.1465-01 
-0.1431-01 
- 0.1392- 01 
-0.1335-01 
-0.1245-01 
-0.1097-01 

9; 
0.2487-01 
0.2385-01 
0'2288-01 
0.2195-01 
0.2106-01 
0.2021-01 
0.1939-01 
0'1862-01 
0'1788-01 
0.1717-01 
0.1650-01 
0.1586-01 
0.1525-01 
0.1468-01 
0.1413-01 
0.1361-01 
0.1312-01 
0.1266-01 
0.1224-01 
0,1184-01 
0.1146-01 
0.1110-01 
0.1075-01 
0.1037-01 
0.9932-02 
0.9402-02 
043725- 02 
0.7854-02 
06758-02 
0.5443-02 
0.3999-02 

p r  
-0.1283 00 
-0.1226 00 
-0.1172 00 
-0.1123 00 
-0.1077 00 
-0.1033 00 
-0.9931-01 
-0.9552-01 
-0.9197-01 
- 0.8862- 01 
- 0.8547- 01 
-04251-01 
-0'7970-01 
-0.7705-01 
- 0.7455-01 
-0.7217-01 
- 0.6992- 01 
- 0.6778- 01 
- 0.6575- 01 
-0.6381-01 
-0.6197-01 
-0.6020-01 
-0.5851-01 
-0.5687-01 
- 0.5528-01 
- 0.5374- 01 
- 0.5223 -01 
-06075-01 
-04932-01 
-0.4796-01 
-0.4671-01 

pi 
0.1066 00 
0.1023 00 
0.9838-01 
0.9467-01 
0.9118-01 
O+i791-01 
0'8483-01 
04192-01 
0.7917-01 
0.7658-01 
03'412-01 
0.7179-01 
0.6958-01 
0.6748-01 
04549-01 
0.6359-01 
0.6177-01 
0~6004-01 
0'5838-01 
0.5680-01 
0.5528-01 
0'5381-01 
0.5241-01 
0.5106-01 
0.4977-01 
0.4854-01 
0.4739-01 
04633-01 
04539-01 
0.4460-01 
04397-01 

z3fi 
-0.2878 01 
-0.3049 01 
-0,3224 01 
-0.3402 01 
-0.3584 01 
-0.3769 01 
-0'3958 01 
-0.4149 01 
-0.434 01 
-0.4543 01 
-0.4744 01 
-0.4948 01 
-0.5155 01 
-0.5365 01 
-0.5578 01 
-0.5794 01 
-0.6013 01 
-0.6234 01 
-0.6457 01 
-0.6682 01 
-0.6910 01 
-0.7138 01 
-04'369 01 
-0,7601 01 
-04'836 01 
-04076 01 
-0.8322 01 
-0tm30 01 
-0.8857 01 
-0.9160 01 
-0.9498 01 
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